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The theory of volume changes on extension is developed in terms of a strain-energy function W of 
the Ogden type. Experimental values of volume change derived from measurements of dilation coef- 
ficients by Allen et aL (Trans. Faraday Soc., 1971,67, 1278) exceed the values calculated from the 
theory by an average amount of 22% at the maximum extension ratio ;k = 2.0, but by only 6% at ;k = 
1.5. These figures represent a considerably closer agreement between theory and experiment than 
that obtainable from the Gaussian statistical theory, but the residual discrepancies are still disturbingly 
large. No reason for these discrepancies can be suggested. It is also shown that the apparent agree- 
ment between theory and experiment obtainable on the basis of the Mooney form of W is fortuitous. 

INTRODUCTION AND OBJECTIVES of particular interest are those of Mooney 7 and OgdenS; 
these are the subject of special consideration in the present 
paper. It will be shown that the Ogden formulation gives a 

The Gaussian statistical theory of the cross-linked network, much closer approximation to the experimental volume 
as presented originally by Flory ~ and later in a slightly modi- change data than the Gaussian statistical theory, though it 
fled form by the author 2 enables the changes of volume still leaves significant discrepancies to be accounted for. 
which which accompany the extension of a rubber to be 
derived. Measured values of these volume changes, notably THEORETICAL 
by Christensen and Hoeve a, Penn 4, Allen, Kirkham, Padget 
and Price s and Price and Allen 6, have revealed large diver- Basic formulation 
gences from the theoretically predicted values. The question 
which naturally arises is whether these divergences can be The theory of volume changes here presented follows the 

same general lines as the earlier treatment based on the related to the deviations in the form of the stress-strain 
Gaussian network theory (Treloar 2) except for the substitu- relations from the corresponding theoretical relations, in 
tion of a more general expression for the free energy of net- which case the substitution of an experimentally more 
work deformation. For a state of pure homogeneous strain realistic form of strain-energy function might enable the 

observed volume changes to be more accurately predicted, defined by three principal extension ratios ~l,  X2 and ~'3 
In the theory of Flory ~ the response of the rubber to an with reference to the stress-free state the total Helmholtz 

free energy, A, is expressed by the equation: applied stress is assumed to involve two distinct mechanisms 
of deformation. The first of these is related to the change 
of volume, and is associated with the forces between the A = A * + cI~(X 1 , ~2, ~3) (1) 
molecules; this mechanism is of the same kind as that which 
is responsible for the compressibility of an ordinary liquid, in which A* represents the contribution of the compressi- 
The second mechanism is related to the distortion of the bility (or liquid-like) component and the unspecified func- 
rubber-like network, the corresponding change of free tion ,I~ the network deformation contribution. The princi- 
energy in this process being related to the configurational pal stresses t 1, t2 and t 3 are obtained by equating the change 
entropy of the network, in free energy 5A in an incremental deformation ~ i  to  the 

work done by the corresponding force. The volume in the In the present paper the same basic separation into a com- 
pressibility and a network deformation mechanism is retained, strained state being given by V = ~t I ~.2~k3 V u , where Vu is the 
but in place of the expression for the free energy of network unstrained volume; we obtain in this way: 

tions may then be derived for the change of volume in a pure deformation derived from the statistical theory a general form t i V x . = ( a A  * Xi ~-a~ii v,,~ a ~ )  of network strain-energy function is introduced.General equa- ' +a-~. 8~ti [i= 1 ,2 ,3]  (2) 

homogeneous strain of any type. By the substitution of any 
particular form of strain-energy function into these equations Putting OA*/a V = p*, where p* is equivalent to a hydro- 
specific expressions for the changes of volume (e.g. in simple static pressure, and noting that ~ V/OXi = Vflti ,  we obtain 
extension) are readily obtained. The advantage of this method from equation (2): 
of treatment is that it provides a uniform basis for the treat- 
ment of volume changes which brings out the relationship 
between the statistical or thermodynamic approach on the one  ~k i ~)dp t i = --p* + - -  - -  (3) 
hand and the phenomenological or purely mechanical approach , V i)Xi 
on the other. 

Among the phenomenological theories of rubber elasticity The quantity p* is related to the volume of the system and 
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to the compressibility K. As in the earlier paper, let V 1 be putting X 2 = k] -1/2 for simple extension (or uniaxial compres- 
the volume for which p* = 0. Then: sion) and dropping the subscript 1: 

1 V -  Vl 
- p *  . . . . .  (4) 

K V 2xV/V= K 2.~ Un(1 - X -'~n/2) (10) 

n 
To eliminate p* we consider the stress-free state, for which 
V = Vu, Xi = 1, t i = O. Equations (3) and (4) then yield: 

For comparison with experiment it is convenient also to in- 
V u - V I  1 ( 3 ~ )  troduce the differential volume change aln v /ax ,  termed 
- -  + - -  = 0 (5) the 'dilation coefficient' by Allen et al. s. Differentiation of 

K V  Vu ~ xi=l equation (10) gives: 

For a material which is isotropic in the unstrained state the 1 ~-" 
strain energy function is symmetrical in the hi. We may alnV/aX = ~ K  ~ la n an X-an/2-1 (11) 
therefore write: n 

The result equation (10) has been obtained by Chadwick 9 
hi= l on the basis of  a more general mathematical formulation. % V  t~l l 

For an equi-biaxial extension the expression for the total 
where g' is a constant. To a sufficient degree of accuracy it volume change, obtained from equations (8) and (9) is: 
is not necessary to discriminate between V and Vu in the , 
denominators of  the terms in equation (5). With this approxi- 
mation equations (4) and (5) and (5a) give: A V / V  = K Z #n(1 - Xz 2~n) (12) 

V -  Vu g' n 
- p *  - (4a) 

K V  V 
This also may be derived from the formulation of Chadwick. 

Substitution into equation (3) yields finally: 
Mooney equation. The Mooney form of strain energy func- 

V - Vu hi 3~  g' tion, namely: 
ti - + (6) 

K V  V OX i V W= q' /V = CI(X12 + X2 2 + X 2 - 3) + C2(Xi -2 + X2 "2 + X3 " 2 -  3) 

For the case of  simple extension (or uniaxial compression) (13) 
corresponding to an axial stress t l ,  with t2 = t3 = 0, equation 
(6) yields, on putting i = 2: is a special case o f (9 )  with a l  = 2, a 2 = - 2 ,  #1 = 2C1,/12 = 

-2C2.  Substitution of  these values into equation (10) gives 
V - Vu = A V  = -K[X2(3~/3X2)  - g'] (7) for the volume change in simple extension (or uniaxial com- 

pression): 
where X 2 ~ h 1-1/2 

For an equi-biaxial extension produced by tensile stresses A V / V =  2K[CI(1 - I /h) + C2(X - 1)] (14) 
t2 = t3, with t l  = 0, the corresponding result is: 

while for the corresponding differential quantity equation 
A V = - K  [hi (8~/3X1) - g ' ]  (8) (11) gives 

Particular forms o f  strain energy function 31n V/3X = 2K(C 1/X 2 +/2'2) (15) 
As a basis for further development it is convenient to in- 

troduce the form of strain energy function proposed by Gaussian statistical theory. The Gaussian statistical theory 
OgdenS; other more restricted forms may then be derived yields the strain-energy function 
from this as special cases. The strain energy, W, per unit 
volume is represented by Ogden in the form of the following 1 
series W = G(X?+X 2 + ) 2 - 3 )  (16) 

q~ ~ ,  which corresponds to the first term of  the Mooney equation 
W = - -  = g n  (X~n + X~ n + X~ n _ 3) (9) (13), with G = 2C1. Hence for simple extension (or uniaxial 

V ~n an compression) 

in which the an may be any real numbers. This formula was A V / V =  KG(1 - I /h) (17a) 
originally applied by Ogden to an incompressible material, 
but may equally well be applied to a (slightly) compressible Oln V/bX = KG/X 2 (17b) 
material provided that the hi are defined with respect to the 

* Flory 1 applies the term dilation coefficient to the different quan- 
stress-free dimensions. Differentiation of equation (9) with tity (alnV/alnl)T, p which is equivalent to halnV/ah in the present 
respect to X2 and substitution into equation (7) yields on notation 
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COMPARISON WITH GAUSSIAN THEORY 

~ ~ ~ C  A ~ ~ IntheattempttOcOmparetheexperimentalresultswiththe 
8 A 8 A B formula (17b) derived from the statistical theory a difficulty 

,,~ immediately arises in assigning an appropriate value to the 
~ ~  modulus G in this formula. Since the experimental force- 

0 4 0-4 extension curve does not coincide with the form deduced 
- from the Gaussian theory, i.e., 

a b f =  G(X -- 1/~, 2) (20) 
q . o  ' 18 ' " J o  ' /8 

X X it is not possible to assign a unique value to the modulus G 
Figure 1 Sample A. (a): Dilation coefficient, (A) experimental; in equat ion (17b). To  overcome this d i f f i cu l t y  A l len et al. s 
(B) from equations (21) and (22); (C) from equation (11 ), with adopted the common procedure o f  subst i tu t ing/ / (X - 1/X2), 
scaled parameters from Table I (lower line). (b): Total volume wherefis  the measured value of the force, for G in this 
change, (A) by integration of (A)a; (B) by integration of (B)a; 
(C) from equation (10), with scaled parameters from Table I equat ion so as to obta in 
(lower line). K = 5.83 x 10 -4  mm 2 N -1  

OlnV Kf  
- - -  (21) 

0X X 3 - 1 
Equations substantially equivalent to (17a) and (17b) have 

been given by Flory I Since the samples studied yielded force-extension relations 
For equi-biaxial extension the corresponding volume in close accord with the Mooney equation* 

change, obtained by putting a = 2,/.t 1 = G in equation (12), 

is f =  2(X - 1/X 2) (C1 + C2/X) (22) 

AV/V = KG(1 - X2 -4) (18) an equivalent procedure, which will be adopted in the pre- 
sent paper, is to use values of f calculated from equation (22) 

EXPERIMENTAL DATA CONSIDERED in conjunction with equation (21), the values of the two 
Mooney constants for each sample being taken from the 

Ideally, for comparison of calculated and experimental re- original paper. (It must be emphasized that this procedure 
sults, it would be desirable to have volume-change data on does not imply acceptance of the Mooney form of strain- 
specimens for which the form of strain-energy function is energy function; it is merely a convenient empirical method 
known. This form can only be established with an'adequate of generating the experimental data. See Section 6). For 
degree of generality from extensive biaxial strain experi- the compressibility the figure used by Allen et al. s namely 
ments such as those reported by Jones and Treloar i°. In the 5.83 x 10-10m2 N -1 (at 45°C), was assumed. (This figure 
absence of such data it is desirable at least to have complete was provided by Dr. Price). 
data on the form of the force-extension relation in simple Values of the dilation coefficient calculated in this way 
extension. The most extensive data which satisfy this more are reproduced in Figures la to 4a (curves B). The corres- 
limited requirement are those of Allen, Kirkham, Padget and pending experimental values (curves A) show increasing 
PriceS; these data will therefore be used as a basis for compa- divergences from the theoretical curves as the extension is 
risen with the theoretical deductions given above, increased, being in excess of the calculated values at X = 2.0 

Allen et el. s examined five vulcanized natural rubber by amounts varying from 171 to 266% approximately, with 
samples, differing in degree of cross-linking, and obtained an average difference of 212%. (Substantially identical 
data on the dilation coefficient bin V/OX in both the dry and curves for samples A, C and D are given in Figure 5 of the 
swollen states. They also obtained values of the Mooney con- original paper by Allen et aL s. These very large divergences 
stants by which the form of the force-extension curves could however, are liable to give a somewhat exaggerated impres- 
be represented. The present discussion will be limited to sion of the inadequacy of the theory. A more balanced 
their samples A, B, C and D in the unswollen state. For picture is conveyed by comparisons not with the dilation co- 

these samples the maximum value of X attained lay between * The constants C 1 and C2 in the notation of Allen et al.5 differ by 
1.9 and 2.1 ; their sample E, for which the maximum value a factor of 2 from those defined by equation (22) 
of X was less than 1.5, will not be included. The complete 
set of numerical results, including those reproduced in the 
form of graphs in the original paper, has kindly been made 
available to the author by Dr. C. Price. 

The volume changes referred to were not obtained by 16 ' A ~  
direct measurement but were derived indirectly from ~ C 
measurements of the pressure dependence of the force at x ~ , ,  
constant length, making use of the thermodynamic identity ~ ^ ,~1 

(aV/Ol)p,T= (Of/aP)l,r (19) ~ 8 \ ~ ~ ~ z l  

The experimental volume-change data will be compared a b 
first with the Gaussian statistical theory and then with the ~O ' 1.4 ' 1.8 ' /j I.O ' 14 ' I-'8 
Ogden theory. The bearing of the Mooney theory will be X X 
examined later. Figure 2 Sample B. Particulars as for Figure 1 

1 4 1 6  P O L Y M E R ,  1978 ,  Vo l  19,  December  



Dilat ion o f  rubber on extension: L. R. G. Treloar 

tion (21). This conclusion has been verified by direct cal- l 
24 k culation. Moreover, both methods of calculation yield lower 

values than would be obtained by the insertion of the small- 
strain value of modulus G in either equation (21) or equa- 

A C tion (23). These inconsistencies arise from the fact that 
.~ ,~ 16 16 / E  when the force-extension relationship deviates from the 
~o <o ~ " ~  ,~[-. ~ theoretical form there is no unambiguous way of interpret- 
~O ~ ~ _ O  ing the Gaussian modulus G. The most that can be achieved 
- 8 B ~  8 is consistency between the methods of calculation of the 

dilation coefficient and of the total volume change, and 
this is ensured by the method used above, i.e., by the inte- 

a b gration of the calculated dilation coefficient curves with 
i i i i i 

010 14 18 ' ;: I0 14 I respect to X so as to obtain the total volume change. 
X X 

Figure 3 Sample C. Particulars as for Figure I COMPARISON WITH OGDEN THEORY 

The effectiveness of the strain-energy function represented 
by equation (9) for the interpretation of the stress-strain ye- 

A C A ~  lations of rubber was first demonstrated by Ogden s who 
16 <~l ~ ~ used a 3-term expression of this type to account for data by 

_ol ~l ~ ! the writerll f°r natural rubber in simple extensi°n' equi" 
biaxial extension and pure shear. The values of the para- 

~O 8 meters which he used are given in the top line of Table 1. 
- A more extensive study, involving general biaxial strain 

measurements, was carried out by Jones and Treloarl°; this 
, , , also yielded a 3-term function, with parameters closely 

O1O 14 18 ' " ' ' I.O 14 1"8 similar to those found by Ogden (Table 1). Confirmation 
X X of this same general form is also provided by the recent work 

Figure 4 Sample D. Particulars as for Figure 1 of Vangerko and Treloar 12. Furthermore, comparable biaxial 
strain data obtained by Obata, Kawabata and Kawai 13 yielded 
a function which, though not represented in terms of an alge- 

efficient (i.e. the differential volume change) but with the braic series, was of very similar form to that obtained by 
total volume change AV. This was not measured by Allen Jones and Treloar 1°, except for a scale factor. This evidence 
et aL but may be obtained by integration with respect to X encourages the hope that a function of the same general 
of their experimental dilation coefficient curves. The results form as that represented by either set of parameters in 
so obtained are compared in Figures I to 4 (right) with the Table 1 may reasonably be assumed to apply to vulcanized 
calculated curves of total volume change, also obtained (for rubbers in general, with appropriate numerical scaling. 
reasons discussed in the next paragraph) by numerical inte In applying these considerations to the data of Allen et al. 
gration of the corresponding calculated dilation coefficient the constants of Jones and Treloar given in Table 1 were 
curves. The divergences from the calculated values at X = preferred, and a scaling factor (S.F.) was applied to the/a n 
2.0 shown in these figures range from 40% to 75%, the ave- such that the limiting value of the shear modulus at zero 
rage difference being 53%. These differences are only about strain (X -~ 1), namely ½Y.l~nOtn, was equal to the correspon- 
a quarter of the corresponding discrepancies in the values of ding value of 2(C1 + C2), as given by Allen et al., for the 
dilation coefficient, samples under consideration. For the Jones and Treloar 

Some comment is desirable here on the application of constants we have then 
the theoretical formula (17a) to experimental data for the 
total volume change. As in the case of the dilation coefficient ½ZI2ne n x Scaling Factor = 2(C1 + C2) (24) 
some authors have introduced the experimental value of 

f /(X - l/X 2) into this equation to give Taking values of C 1 and C2 from Table 5 of Alien et al., and 
put t ing  ½~btnOln --- 0.4807 Nmm -2 from Jones and Treloar t° 

AV_ Kf(1 - l/X) = K.FA (23) the values of S.F. shown in Table2 are obtained. As previously, 
V X - 1/k 2 1 +X +X2 K was taken as 5.83 x 10 -10 m 2 N - l .  The values of dilation 

coefficient calculated in this way from equation (1 l) are 
This procedure suffers from the disadvantage that values of compared with the previous experimental results in Figures 
total volume change so calculated, using the experimental 1 to 4 (a curves C). The latter are in excess of the calcu- 
values off,  are not consistent with values of dilation coef- lated values at X = 2.0 by amounts varying from 63% to 
ficient calculated from the analogous equation (21); in 121%, the mean difference for the four samples being 90%. 
other words, equation (21) cannot be derived from equation 
(23), except in the case when the variation of f with X is of 
the form (20) required by the theory. In practice, for values Table 1 Parameters in strain-energy function (19) found by Ogden s 

and by Jones and Treloar tO (Ix n in N mm -2) 
of ;~ up to 2.0 at least, the effective modulus G defined by 
equation (20) decreases continuously with increasing strain; ~t ~2 ~a ~t ~2 ~a 
the total volume change derived from equation (23) will 

Ogden 1.3 5.0 --2.0 0.618 0.00118 --0-0098 therefore fall below that derived by numerical integration of J and T 1.3 4.0 -2.0 0.69 0.01 -0.0122 
the dilation coefficient curve obtained on the basis of equa- 
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Table 2 Scaling factors for elastic parameters tion in simple extension (equation 22) cannot be taken to 
imply that the general strain-energy function is of the Mooney 

2(c1 + c2) form (equation 9). These authors have clearly demonstrated 
Sample N mm -2 S.F. that the use of the Mooney strain-energy function, with 

values of Cl and C2 derived from simple extension experi- 
A 0.1697 0.3530 ments, is not consistent with data for other types of strain 
B 0.259 0.5388 (e.g. uniaxial compression). In the general analysis given in 
C 0.450 0.9361 
D 0.264 0.5492 Section 2 it is seen that the volume change in simple exten- 

sion is determined not by the tensile stress directly, but by 
aqs/ax 2, the derivative of the strain-energy function with res- 
pect to the transverse direction, i.e. for )t 2 ( 1. This quan- 
tity cannot be obtained from the force-extension relation in 

A " - ~  simple extension alone, but necessitates a comprehensive 
0.24 . -  study of the biaxial strain behaviour, as in the work of Jones 

S - "  " - " B  and Treloar '° . 
0"22[- The argument may be illustrated more specifically by con- 

/ ,,-" sidering the data for simple extension obtained by Jones and 
' ~  0"20 - "  Treloar. and reproduced in Figure 5. These data are in 

[ agreement with the Mooney equation from about 1/X = 0.45 

/ 

~ "  [ I I I 0'3 O!5 O'-7 0'.9 to 1/X = 0.88. They may also be represented to an accuracy 
of 4% or better by an Ogden series, with values of parameters 

I / X obtained from experiments involving the general biaxial 
Figure 5 Mooney plot for simple extension. A, Experiments of strain (Table 1). These respective forms of strain-energy 
Jones and Tre!oar 10. B, Calculated from Ogden theory, with para- 
meters from Table I (lower line). Mooney and Ogden - while yielding closely similar force- 

extension curves, give very different values of a~/aX2, and 
hence of the volume change in simple extension. This is il- 

The corresponding curves for A V/V calculated from equa- lustrated in Figure 6 which shows the curves for A V calcula- 
tion (10) are shown in Figures lb to 4b. The difference ted from the Ogden formula and from the corresponding 
between theory and experiment is now reduced to the range Mooney formula, using values of the constants obtained from 
11% to 40%, with a mean value of 22%. This is less than the Mooney line in Figure 5 for the latter. The difference 
half the discrepancy (53%) calculated on the basis of the between these two calculated values of A V at X --- 2.0 for 
statistical theory, this particular case amounts to 35%. 

Calculations of total volume change were also made on It must therefore be concluded that the apparent satisfac- 
the basis of Ogden's numerical parameters, given in the first tory agreement with the volume changes predicted by the 
row of Table 1, (with appropriate adjustments of the scaling Mooney formula which was obtained by Price is open to 
factors). The results so obtained were in all cases within 1.0% serious objection. 
of those obtained on the basis of the Jones and Treloar figures. 
This confirms the immediate impression that the differences 

DISCUSSION AND CONCLUSIONS 
between the two sets of parameters in Table 1 are relatively 

unimportant. Experimental 
The differences between calculated and experimental 

values of dilation coefficient shown in Figures I to 4 are The foregoing analysis establishes that the use of the 
consistent with the calculations made by Price ~4 on the Ogden form of strain-energy function in place of that derived 
basis of Ogden's numerical values of parameters, from the statistical theory leads to a considerable reduction 

THE MOONEY THEORY 

2.0 A 
It has been shown by Price and Allen that the Mooney 
theory, as represented by equation (15), yields moderately 
close agreement with experimental data for the dilation co- 
efficients of both natural and polybutadiene rubbers 6'14. A 
similar conclusion is arrived at from calculations of A V/F 
using equation (14) together with the values of Mooney con- ~1" 
stants given by Allen et al. s for the natural rubber samples ,fQ I.O 
under discussion in the present paper. The discrepancies bet- 
ween experimental and calculated values of AF/V  so ob- 
tained ranged from +l 1% for sample A to -14% for D, with 
an average o f -1%.  Before this close agreement is accepted 
as an explanation, however, it is necessary to examine the 
logical basis of this application of the Mooney theory. O 

The constants in the Mooney equation are normally de- l-O I-4 1.8 
k 

rived from experiments confined exclusively to simple ex- 
tension. It has been shown unambiguously by Rivlin and Figure 6 Calculated total volume change. (A) From equation (14), 

with C1 = 0.148 N mm -~, C2 = 0.108 N mm -2. (B) From equation 
Saunders is, and more recently by Obata et  el. 13 and by (10),with parameters from Table I (lower line). K = 5.83 x 10 -4 
Jones and Treloar ~°, that agreement with the Mooney equa- mm 2 N-I 

1418 POLYMER, 1978, Vol 19, Dece'mber 



Dilation of rubber on extension: L. R. G. Treloar 

O ~ be assigned to the parameters for the particular rubbers for 
which volume-change data are available. The only other phy- 
sical assumption is that the 'liquid-like' properties of the 

-2 rubber may be represented by a normal compressibility 
term. A closely related theory of volume changes has been 
developed by Ogden ~8 which discusses this aspect of the 

'~1 -4 B problem in a more general way and arrives at an identical 
"~ Z solution for the particular case when the 'liquid' compres- 
_O sibility is isotropic and independent of the distortional strain 

(i.e. of the network deformation in the present theory). If 
-6 this restriction is relaxed, i.e. if there is a 'coupling' between 

the distortional strain and the compressibility term, then 
the 'liquid-like' component develops anisotropic properties 

-8 and the situation becomes much more complicated. (Such 
. . . .  anisotropy of the liquid-like component is to be distinguished 

025  O'.4 O'6 O"8 IO from the anisotropy of compressibility discussed above, 
x l which is associated directly with the network anisotropy). 

Figure 7 Calculated volume change for uniaxial compression. (A) The compressibility of the liquid-like component is deter- 
Statistical theory (equation 17a), with G = 0.4807 N mm -2. (B) mined by the intermolecular forces, which in the unstrained 
Ogden theory (equation (10} with parameters from Table 1 (lower 
line). K = 5 . 8 3  x 10 -4 mm 2 N -1 rubber are isotropic; it is possible in principle for the orien- 

tation of chain segments resulting from the network defor- 
mation to confer some degree of arlisotropy on the system 
of the intermolecular forces and hence on the compressi- 

of the discrepancy between observed and calculated volume bility. However, there are reasons for believing that any 
changes. From the curves presented it is seen that this dis- such induced anisotropy would not be significant, at least 
crepancy decreases rapidly with decreasing strain. Thus, for for strains up to, say, ~ = 2. Without going very deeply into 
example, the mean discrepancy (for the 4 samples) between this question, the work of Hennig 19, which discusses the 
calculated and observed values of A V/V falls from 22% at strain-induced anisotropy of a number of properties of poly- 

= 2.0 to 9% at k = 1.6 and to only 6% at k = 1.5. mers (e.g. compressibility, thermal expansion, thermal con- 
The most serious uncertainty in the calculations lies in ductivity, etc.) which are related to the intermolecular forces 

the absence of direct experimental data on the values of the but are not directly dependent on network structure, may 
Ogden parameters for the particular rubber samples examined, be quoted. Hennig succeeded in measuring a difference in 
though from the evidence presented in Section 5 it seems un- thermal conductivity of 3% between longitudinal and trans- 
likely that this could account for the whole of the observed verse directions in a natural rubber vulcanizate extended to 
differences. X = 3. At X = 2 the difference would be less than half this 

value. Differences of this order in the compressibility would 
Theoretical have an insignificant effect on the calculated values of the 

In addition to the Mooney equation, Price 14 has also con- volume changes in the region of strain covered by the experi- 
sidered the application of the early theory due to Elliott and mental measurements of Allen et el. s. 
Lippmann 16 and Gee 17, which relates the dilation coefficient Thus, no plausible theoretical reason can be advanced for 
to the slope of the force-extension curve at any point. This the observed discrepancy between calculated and observed 
theory, which neglects the anisotropy of compressibility of volume changes, and it seems to the author that the problem 
the strained rubber arising from the network deformation, is more likely to be clarified by further experimental studies 
gives the result than by modifications to the theoretical treatment. In a dis- 

cussion of the problems involved Price 14 suggests among other 
(~lnV 1 _ K li (a f )  (~5) thingsmeasurementsofvolumechangesundertypesofstrain 

\ ~ - ~  ] p, T 3 V ~l p, T 

where I i is the unstrained length. This formula was found by 
Price to give a fairly satisfactory representation of the data 6 
of Allen and co-workers for both natural and polybutadience 
rubbers. However, it is difficult to believe that this agree- 
ment is significant, since the anisotropy of compressibility 
is a property of the network which has been explicitly cal- ,~1,. 4 
culated by Flory on the basis of the Gaussian theory and is ~O 
implicit in the theory presented in Section 2 of the present 
paper and in the specific form of this theory incorporating 2 
the Ogden form of strain-energy function. The omission of 
this fact in Gee's theory was due to the absence at that time 
of any method of evaluating it. O , 

The present theory, based on the Ogden form of strain- IO I-'5 2-0 2.5 
energy function, contains a minimum of arbitrary assump- x a 
tions. This form of strain-energy function has been estab- Figure 8 Calculated volume change for equi-biaxial extension. (A) 

Statistical theory (equation 18) with G = 0.4807 N mm -2. (8) lished experimentally up to values of ;~ of 2.6 at least, and Ogden theory (equation 12), with parameters from Table I (lower 
the only uncertainty, already emphasized, is in the values to line). K = 5.83 x 10 -4 mm 2 N -1 
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